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Abstract

In this paper, we consider a two-level system (TLS)
coupled to a one-dimensional continuum of bosonic
modes in a transmission line (TL). Using the
master equation approach, a method for
determining the photon number distribution of the
scattered field is outlined. Specifically, results for
the reflected field when driving the TLS with a
coherent pulse are given. While the one-photon
probability is enhanced compared to the incident
coherent field, the system is still not a good
deterministic single-photon source. Extending the
system to contain two separate TLs, however,
output fields with one-photon probabilities close to
unity can be reached.
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Introduction

In recent years, experimental advances in the field
of circuit quantum electrodynamics (cQED) [1-3]
have opened up possibilities for studying light—
matter interactions in a wide range of coupling
regimes, including the ultrastrong regime [4, 5]. In
cQED, artificial atoms based on Josephson
junctions interact with electromagnetic fields in
superconducting  circuits, typically in the
microwave regime. The advances in this research
area have largely been driven by potential
applications in quantum computing, where the
artificial atoms play the role of qubits and the
photons are used for qubit manipulation. While
most of the experiments focus on fieldsconfined to
a cavity, there is now a growing interest in systems
where the artificial atom interacts with a continuum
of propagating photonic modes in an open
transmission line (TL). These systems have
potential  applications in optical quantum
information [6], where the roles of the photons and

the artificial atoms are reversed. The information is
carried by the photons, while the atoms are used to
engineer environments for manipulating the
photons and mediating effective multi-photon
interactions.

Systems with (artificial) atoms coupled to a one-
dimensional continuum of photonic modes have
been theoretically analyzed in [7-14] and
experimental impementations in cQED include
[15-24]. In order to use propagating photons for
quantum  information, several tools  for
manipulation, like single-photon sources and
detectors, are needed. Today, the standard method
for detection and state reconstruction of
propagating microwave fields builds on linear
amplifiers [25, 26]. Single-photon detection has
been theoretically analyzed in e. g. [27-30].
Moreover, single-photon sources utilizing TL
resonators have been experimentally realized [31—
34].

In this paper, we examine the possibilities of
constructing a non-cavity based singlephoton
source. Resonant scattering of coherent states on a
two-level system (TLS) has been shown
theoretically [9, 11, 12, 35] and experimentally [20]
to result in a photon number redistribution, with the
single-photon ~ probability ~ being  enhanced
(suppressed) in the reflected (transmitted) field.
The idea is to exploit this fact to, by choosing an
appropriate input pulse, use the TLS as an on-
demand single-photon source. Previous treatments
of coherent state scattering on a TLS have been
restricted to low-power input pulses [9] or constant
input fields of arbitrary intensity [11, 12]. For our
purposes, we extend the analysis to pulses of
arbitrary intensity, building on the results for
continuous coherent driving in reference [12].
While our main motivation for this work is cQED
implementations, the analysis is more general and
applies to any system described by a TLS coupled
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to a continuum of photonic modes in one
dimension. A different example is the surface
plasmon systems [35].

The paper is organized as follows. In section 2, we
introduce our system and write down the master
equation for the TLS and expressions for the output
field operators. In section 3, we show how to
determine the photon number distribution, given
the master equation and the field operators. In
section 4, results for the reflection of coherent
square pulses are given. Finally, in section 5, we
extend the setup to include two TLs and determine
the photon number distribution in the same way.

System and master equation

We consider a TLS locally coupled to an infinite
TL, i.e. a 1D open space supporting a continuum of
left- and right-propagating photonic modes. A
schematic sketch of the setup is shown in figure 1.
The coupling v is assumed to be strong in the sense
that the damping of the TLS is dominated by the
relaxation to the TL. One particular example of
such a system, inspiring us to this work, is a
transmonqubit in the two-level approximation
coupled to a superconducting coplanar waveguide.
This system was theoretically analyzed in [12] and
has been explored in recent experiments with
propagating microwave photons [20]. The
configuration we consider can be described in
terms of a quantum Langevin equation for the TLS
coupled to a bath of harmonic oscillators, together
with input—output equations relating the incoming
and outgoing states at the interaction point [36].
The TLS operators are described in
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is equal to the number of photons per relaxation
time 1 y. Here + V (t) and — V (t) denote the
positive and negative frequency parts, respectively.
In a superconducting coplanar waveguide, V(t) is
proportional to the voltage between the center
conductor and ground. We consider the case where
we have a coherent driving signal Vin (t) from the
left, close to resonance with the TLS, and vaccum
as input from the right. With
? {r} = (r] R I[F]'Ibeing the TLS operator
coupling to the TL, the input—output equations
result in the following expressions for the
transmitted (right) and reflected (left) outgoing
fields,

m

Vi) = V2(0) + —=a7(1)

V(i) = éﬂx}.

We take our coherent input signal to be of the form

(V. (1)) = A7) sin ayt,
where A(t) is the pulse amplitude envelope
function, varying on a timescale much slower than
1 od.

From the quantum Langevin equation, we can
derive a master equation for the reduced density
matrix, p (t), of the TLS. We assume that the full
density matrix initially can be written as a direct
product, that the coupling vy is much smaller than
the energy of the TLS and that the correlation times
of the TL variables are short compared to other
timescales. Neglecting thermal excitations, in a
frame rotating with the driving frequency wd and
after employing the rotatingwave approximation,
the master equation reads

o) =2 0% (0] + 1D(e7)o (1) - smmv.';_’f-f [o".p(1)]

L

where @, is the transition frequency of the TLS and A
Lindblad operator is defined by D(c)p = cpc’ - %({‘Tf_'j

(4 = 0) and time expressed in units of the relaxation time
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powers, the probability to scatter a photon increases
until it reaches a maximal value of 0.5. For larger
N.,,{f} input powers, the Rabi splitting of the transition
= [Jl. ﬂ(f ]] leads again to a lower scattering probability. The

simple form

plt)=D(a")plt) - f\'l

2 optimal point essentially corresponds to exciting

the TLS with a m-pulse and letting it relax with

where Nin (t) is the number of incoming photons probability 0.5 in each direction. For the purposes

per relaxation time. Symbolically, we can write the of an on-demand single-photon source, this is the

master equation as best we can do with a TLS coupled to a single TL.

In section 5, we consider an extended setup, where

plt) = L(t)plr), the TLS is coupled to an additional TL.

Two TLs

where L(t) denotes the Liouvillian super-operator.

.. . In this section, we consider an extension of the
Distribution for the reflected field previous setup, where the TLS is coupled to two
semi-infinite TLs (see figure 4). As an example, the
circuit analysis in [12] of a transmon coupled to a
coplanar waveguide can be generalized to
accomodate this case as well. In the extended setup,

there is an additional free parameter; the ratio of

As mentioned in the introduction, -earlier
calculations and experiments have shown that the
onephoton probability is enhanced in the reflected
field when driving the TLS with a constant
coherent sign.al. Since our main n.lotivation for this the couplings to the two TLs.
work is to investigate the possibility of an on-
demand single-photon source, we compute the
photon number distribution for the reflected field

when driving the TLS with a coherent pulse.

For a given pulse shape, there are two free
parameters in the problem; the temporal width of
the pulse T (in units of the relaxation time) and the
total mean number of photons in the pulse N. In the
following we restrict the analysis to square pulses.
These are easy to generate in microwave
superconducting circuits and therefore convenient
to use as input. Moreover, the master equation (6)
can be solved analytically for square pulses.

Solving the master equation and carrying out the
procedure outlined in the previous section, we end
up with analytic, but complicated, expressions for
the lowest photon number probabilities. In figure 2
we plot PO, P1, P2 and P3 as a function of T and N.
For a given pulse width, the one-photon probability
periodically reaches a maximal value of P= 0.5 1.
When the pulse width starts to become comparable
to the relaxation time, however, the probability to
scatter more than one photon becomes non-
negligible. In order to maximize the one-photon
probability while keeping the higher photon
number probabilities low, we should look at short
pulses. Figure 3 shows the probabilities for T = 0.1,
a regime where the probability to scatter more than
one photon is negligible. For increased input
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Figure 2. Photon number probahilities for the feld reflected from o TLS as 2 function of
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Figure 3. The lowest photon number probabilities
for the reflection of a coherent square pulse with
width T = 0.1 as a function of the mean number of
incoming photons N.
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Figure 4.Sketch of the setup with two semi-infinite
transmission lines. The ratio of the couplings to the

two lines is a < 1. The weakly coupled line is used
to excite the TLS and a photon leaks out into the
strongly coupled line with high probability.
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Figure 5. Photon number probabilities for the
output field in the strongly coupled line for T = 0.1.
The coupling ratios are a = 0.01 (left) and a = 0.5
(right).

The main idea is to couple the TLS much more
strongly to one of the lines. After exciting it
through the weakly coupled line, a photon will be
emitted to the other one with high probability. The
configuration can be described in terms of a
quantum Langevin equation for a TLS coupled to
two separate baths. With a coherent time-dependent
drive in the weakly coupled line and vacuum as
input in the strongly coupled line, the master
equation takes the following form

g=l+a)lDe)p= i,‘.'m lﬁ‘- H]-

where a < 1 is the coupling ratio. Time is
expressed in units of the relaxation time into the
strongly coupled line. The positive and negative
frequency parts of the output field in this line are =
o = VS () (ttF ). In figure 5 we plot the photon
number probabilities for T = 0.1, with two different
coupling ratios. By choosing smaller values of a,
we can now reach higher one-photon probabilities
in the output field. Figure 6 shows the maximal
values of P1 as a function of a and T, together with
the corresponding values of PO, P2 and P3. For
small a and T we see that P1-values close to unity
can be reached. How small these parameters can be
in practice depends on the specific physical
realization. In our example of a transmon coupled
to a waveguide, the limited anharmonicity of the
transmon sets a limit on the pulse width. The
results, however, depend on T, which is the pulse
width in units of relaxation time (inverse coupling).
One can thus improve the results by decreasing the
coupling to the output line, but this results in a long
output photon, which may not always be desirable
in applications. Essentially, there is a trade-off
between how short we want the output photon to be
and how deterministic the single-photon source is.
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For a typical anharmonicity of 500 MHz we could,
as an example, obtain P1 = 97% and P2 = 0.6%
using a coupling of 4 MHz.

Finally, in the regime where a deterministic single-
photon source is realistic, we can also use a
modification of the setup to create a source of
single-photon path entangled states. Replacing the
semi-infinite strongly coupled output line with an
infinite TL, the photon will
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Figure 6.Photon number probabilities for the output
field in the strongly coupled transmission line as a
function of the pulse width T and the coupling ratio
a, for the value of N where P1 is at its maximum. In
the limit T — 0, the probabilities are given by P a 1
=+11(),P01=-1PandPP==023.

leak out symetrically in both directions. Denoting
the zero- and one-photon states in the left (right)
direction by 0 L and 1 L ( 0 R and 1 R), this would
produce the state

1 \ )
) = = (100 o[V} a + 1) |0} o)
J2

This is an entangled state that could be used to
carry out a Bell test for microwave photons [37]. In
principle, the setup with a single TL could also be
used to generate the state in equation (14).
However, in this case, one of the output ports
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would contain also the large transmitted part of the
input pulse. Although separated in time from the
entangled state, this limits the usefulness of the
setup.

Summary and conclusions

To summarize, we have analyzed the interaction of
a propagating photon field in aonedimensional
waveguide with a TLS. In particular, we have
determined the photon number distribution for the
reflected field when driving the TLS with a
coherent pulse. This setup is not a suitable on-
demand single-photon source, since one-photon
probabilities higher than 0.5 cannot be obtained.
We have also considered a generalized setup with
two TLs, allowing us to achieve one-photon
probabilities close to unity in certain cases. Since
our treatment allows for incoming coherent states
of arbitrary intensity it is complementary to [9],
where the scattering of low-power coherent states
on a TLS is considered using a different formalism.
It is also complementary to [11], where second-
order coherence properties are examined in the case
of a coherent input of arbitrary intensity.
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